Latent Fingerprint Image Segmentation using Deep Neural Network

نویسنده

  • Jude Ezeobiejesi
چکیده

We present a deep artificial neural network (DANN) model that learns latent fingerprint image patches using a stack of Restricted Boltzmann Machines (RBMs), and uses it to perform segmentation of latent fingerprint images. Artificial neural networks (ANN) are biologically-inspired architectures that produce hierarchies of maps through learned weights or filters. Latent fingerprints are fingerprint impressions unintentionally left on surfaces at a crime scene. To make identifications or exclusions of suspects, latent fingerprint examiners analyze and compare latent fingerprints to known fingerprints of individuals. Due to the poor quality and often complex image background and overlapping patterns characteristic of latent fingerprint images, separating the fingerprint region-of-interest from complex image background and overlapping patterns is very challenging. Our proposed DANN model based on RBMs learns fingerprint image patches in two phases. The first phase (unsupervised pre-training) involves learning an identity mapping of the input image patches. In the second phase fine-tuning and gradient updates are performed to minimize the cost function on the training dataset. The resulting trained model is used to classify the image patches into fingerprint and non-fingerprint classes. We use the fingerprint patches to reconstruct the latent fingerprint image and discard the non-fingerprint patches which contain the structured noise in the original latent fingerprint. The proposed model is evaluated by comparing the results from the state-of-the-art latent fingerprint segmentation models. The results of our evaluation show the superior performance of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing Deep Learning Architecture for Latent Fingerprint Matching

Image recognition using partial information is one of the significant problems in current computer vision research. Computer vision has an important role in medical, robotics, economics, and crime-related subjects. Complete fingerprint or face is usually not available at a crime scene or camera image. The full image or partial image of crime is common in most of the crime data. The crime branch...

متن کامل

Robust Minutiae Extractor: Integrating Deep Networks and Fingerprint Domain Knowledge

We propose a fully automatic minutiae extractor, called MinutiaeNet, based on deep neural networks with compact feature representation for fast comparison of minutiae sets. Specifically, first a network, called CoarseNet, estimates the minutiae score map and minutiae orientation based on convolutional neural network and fingerprint domain knowledge (enhanced image, orientation field, and segmen...

متن کامل

Segmentation of the Left Atrial Appendage in the Echocardiographic Images of the Heart Using a Deep Neural Network

Introduction: Cardiovascular diseases are one of the leading causes of mortality in today’s industrial world. Occlusion of left atrial appendage (LAA) using the manufactured devices is a growing trend. The objective of this study was to develop a computer-aided diagnosis system for the identification of LAA in echocardiographic images. Method: The data used in this descriptive analytical study ...

متن کامل

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

Segmentation of the Left Atrial Appendage in the Echocardiographic Images of the Heart Using a Deep Neural Network

Introduction: Cardiovascular diseases are one of the leading causes of mortality in today’s industrial world. Occlusion of left atrial appendage (LAA) using the manufactured devices is a growing trend. The objective of this study was to develop a computer-aided diagnosis system for the identification of LAA in echocardiographic images. Method: The data used in this descriptive analytical study ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017